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ABSTRACT 

We report on a standoff chemical detection system using widely tunable external-cavity quantum cascade lasers (EC-
QCLs) to illuminate target surfaces in the mid infrared (λ = 7.4 – 10.5 μm). Hyperspectral images (hypercubes) are 
acquired by synchronously operating the EC-QCLs with a LN2-cooled HgCdTe camera. The use of rapidly tunable lasers 
and a high-frame-rate camera enables the capture of hypercubes with 128 x 128 pixels and >100 wavelengths in <0.1 s. 
Furthermore, raster scanning of the laser illumination allowed imaging of a 100-cm2 area at 5-m standoff. Raw 
hypercubes are post-processed to generate a hypercube that represents the surface reflectance relative to that of a diffuse 
reflectance standard. Results will be shown for liquids (e.g., silicone oil) and solid particles (e.g., caffeine, 
acetaminophen) on a variety of surfaces (e.g., aluminum, plastic, glass). Signature spectra are obtained for particulate 
loadings of RDX on glass of <1 μg/cm2.  

Keywords: Mid-IR spectroscopy, Quantum cascade laser, Hyperspectral imaging, Chemical detection, HgCdTe focal 
plane array 

1. INTRODUCTION  
Mid-infrared (MIR) spectroscopy has been identified as one of the most promising methods for standoff chemical 
detection due to the fact that most substances have strong and unique absorption features in the MIR spectrum [1-4]. 
Operating in the MIR enables rapid measurements while remaining below the eye-safety maximum-permissible-
exposure limit of 100 mW/cm2. When detecting remote chemical traces, it is often required to locate and identify the 
trace chemical within a larger scene necessitating high-spatial-resolution hyperspectral imaging (HSI). HSI is broadly 
defined as the capture of a series of images of a particular scene at a number of different wavelengths, typically with the 
intent to identify objects of interest within the scene. A hyperspectral image (hypercube) contains a wavelength spectrum 
for each pixel of the camera and represents a spectral map of the imaged surface. While some MIR spectroscopy systems 
rely on passive illumination of the scene by, e.g., the sun or thermal emission, much higher sensitivity is available 
through active illumination. 

In order for an HSI system to capture specific wavelengths in a hypercube, there must be wavelength selection either in 
the illuminator or in the receiver. In this work, we use a widely-tunable EC-QCL which provides wavelength selection in 
the illuminator. EC-QCLs are a technology that has recently made significant advances in power output, spectral range, 
and tuning speed. They are commercially available in wavelengths that cover the range of 4 to 13 μm. They offer a 
rapidly tunable illumination source which can be combined with a high-speed, broadband HgCdTe (MCT) camera to 
capture spectral information rapidly and efficiently [5]. External-cavity interband cascade lasers (EC-ICLs) can also be 
used to extend the wavelength range of a MIR spectroscopy system to shorter wavelengths [6]. 
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For measurement of larger surfaces, the system has an integrated two-axis galvanometer-based scanning mirror system 
(scanner) with a step response of roughly 250 μs to raster scan the laser illumination across the surface to fill the entire 
camera field of view. Raster scanning also allows us to choose a smaller beam size (and thus higher average fluence) at 
the expense of a longer total capture time. 

Table 1. Measurement configurations for close and long range measurements. 

  

 

 

 

 

 

 

 

 

 

 

2.2 Hypercube generation 

The target is illuminated at non-normal incidence to measure the diffuse surface reflectance. The reflectance of the target 
is measured relative to that of a sandblasted aluminum reference sample. Our final result is a reflectance hypercube, 
obtained by taking the ratio of the intensity hypercubes from the target of interest and the reference target. 

As shown in Figure 2, thermal background is subtracted from each frame of the measured hypercube to isolate the signal 
due to laser illumination. This is performed for both the target sample and a reference diffuse reflector. The hypercube of 
the reference diffuse reflector is blurred to remove the effects of surface roughness and speckle, creating a map of laser 
illumination intensity. The hypercube of the target sample is then divided by that of the reference reflector to yield a 
reflectance spectrum. This method of presentation removes the spectral effects of the laser, optics, and camera, giving a 
data set that only involves the spectral information of the sample.  

For raster-scanned targets, a hypercube is captured at each scanner position. These individual hypercubes are then 
intelligently combined into a single composite hypercube. 

3. SAMPLE PREPARATION 
There are two general classes of samples measured: solids and liquids. Liquid samples are typically dispensed via pipette 
onto the chosen substrate and may then be mechanically spread for uniformity. Solid samples are prepared in two 
different ways. ‘Particulate’ samples are prepared via sifting particles onto a surface, typically glass. ‘Solution 
deposited’ samples are prepared via solution deposition in which the target chemical is dissolved in a volatile organic 
solvent and then airbrushed onto the substrate. With solution-deposition, the slow evaporation of the solvent often leads 
to crystallization of the solid. Examples of the two different chemical morphologies can be seen in Figure 4. 
 

Close range Long range 

Standoff Distance 60 cm 5 m 

Camera Lens 50 mm, f/2 200 mm, f/2 

Camera field of View 60 mm 120 mm 

Spatial Resolution at Target 0.4 mm 1 mm 

1/e2 Beam Diameter at Target 1 cm 3 cm 

Laser illumination angle 10 deg 1 deg 

Sample angle 0 deg 0 deg 
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Figure 2. Data processing for generating hypercubes. First, the thermal background is subtracted from the sample and reference 
measurements. Then, the reference measurement is blurred to create a map of the illumination intensity. The sample is then 
divided by the reference to create a reflectance hypercube.  

4. RESULTS 
Measurements have been made of a large number of samples using the HSI system. Only a few examples are given here. 
 
4.1 Liquid measurements 

Figure 3 shows the spectral reflectance of silicone oil on both sandblasted aluminum and rough high-density 
polyethylene (HDPE). Measurements were made at a range of 0.6 m. Figure 4a shows a single hypercube frame of the 
aluminum sample with roughly 1 μL of silicone oil spread over a 0.8-cm2 circle creating a film that is approximately 10-
μm-thick. Figure 4b shows the strong, sharp absorption peak at 1260 cm-1 as well as broader peaks at 1025 and 1075 cm-

1 of silicone oil. Based on the levels of absorption in the spectra, we can infer that the chemical is thicker towards the 
center and thinner near the edge. Figure 4c shows a hypercube frame of the HDPE sample with roughly 1 μL spread 
mechanically over a 2.3-cm2 area to create a film that is approximately 4-μm-thick. Figure 4d shows the corresponding 
spectra which again show features at 1025, 1075, and 1260 cm-1. Comparing the two measurements highlights an 
important difference: while the absorption lines of silicone oil cause a reduction in reflected power in the case of the 
aluminum substrate, they cause an increase in the reflected power from the HDPE sample. This can be attributed to the 
difference in optical boundary conditions at the liquid-substrate interface between the metallic and the dielectric 
substrates [7, 8].  
 
The HSI system has also been used to measure samples at 5-m standoff, as shown in Video 1. The video shows an 
HDPE sample with an IARPA logo drawn in two different chemicals: triethyl phosphate (TEP) and silicone oil. The 
measurement also shows the effects of speckle noise, which is caused by coherent laser light reflecting off the rough 
surface of the HDPE. 
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Figure 3. Results from hypercubes of silicone oil on both metallic and dielectric substrates. (a) and (b) show a single hypercube 
frame and some averaged spectra from a measurement of silicone oil on sandblasted aluminum at 60 cm standoff. The spectra 
demonstrate a thickness gradient from the center of the target to the edge. Each colored spectrum in (b) is the average of pixels 
highlighted in the corresponding colored box in (a). (c) and (d) show similar measurements of silicone oil mechanically spread 
on HDPE. 
 

(b) 

(c) 

(d) 

(a) 

Silicone Oil on Aluminum Silicone Oil on HDPE 
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Video 1. Demonstration hypercube of an IARPA logo drawn in TEP (red spectrum) and silicone oil (green spectrum) on HDPE. 
Each frame of the video is captured at a different wavelength, as shown by the moving squares on the right plot. The sample 
was measured at 5-m standoff. http://dx.doi.org/10.1117/12.2261851.1 

4.2 Solid Measurements 

The HSI system has also been used to measure trace solid particles and residues on soda-lime glass substrates at a 
standoff distance of 0.6 m. Figure 4 compares the morphology and spectra of two samples of caffeine on glass which 
have been prepared in different ways: “particulate” and “solution-deposited.” The particulate sample has 24 μg/cm2 of 
caffeine with a median diameter of 10 μm, sifted onto a 2.5 x 2.5 cm2 substrate. The solution-deposited sample has an 
evenly-distributed film with a loading of 76 μg/cm2 on a 10 x 10 cm2 substrate. The solution-deposited sample clearly 
has a crystalline structure when viewed under a microscope. 

The two samples have noticeably different spectra. The particulate sample gives a spectrum which is very similar to the 
product of the spectrum of bulk caffeine and the spectrum of glass with dips in the reflection spectrum corresponding to 
the imaginary part of the refractive index of caffeine. The solution-deposited sample shows dispersive effects, mirroring 
the shape of the real part of the index of refraction. The solution deposited sample also has a higher reflectance from 
1250 to 1350 cm-1 which is indicative of a diffuse first surface reflection as opposed to the specular behavior expected 
from a smooth piece of glass. This comparison highlights the spectral differences which can occur in real-world 
detection situations. 

Figure 5 shows two spectra measured for particulate samples of acetaminophen and RDX on 2.5 x 2.5 cm2 glass 
substrates. Overlaid with the measurements are results of a simple signature model. The total reflection spectrum Rtarget is 
calculated based on three different paths the incident light can take. The first term is the direct reflectance from the 
substrate, Rsub. The second term is the back reflectance Rpowder from the particles. The third term is the light that scatters 
off both the particle and the substrate. These factors are applied using the particle fill factor, FF, and two fit parameters 
Cback and Cfwd [7]. Considering its simplicity, this model gives surprisingly good correspondence with measurements. We 
plan to further refine the model to achieve even better correspondence with measurements. ܴ௧௔௥௚௘௧ = ሺ1 − ሻܴ௦௨௕ܨܨ + ௕௔௖௞ܥ൫ܨܨ +  ௙௪ௗܴ௦௨௕൯ܴ௣௢௪ௗ௘௥ܥ

Figure 6 shows the measured reflectance of samples of RDX on glass with the mass loading ranging over nearly two 
orders of magnitude. A few observations can be drawn from this measurement. The shape of the spectra is preserved as 
the loading is changed. Also, the reflectance scales roughly linearly with mass loading. The existing setup can measure 
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Figure 5. Measured spectra of particulates of acetaminophen (left) and RDX (right) on glass. Each spectrum is the average of 
roughly 1000 pixels from the hypercube captured at 60 cm standoff. Also plotted are the modeled spectra using the simple 
signature model.  

 

 
 

Figure 6. Reflection spectra of RDX particles on glass at different loadings. Particle fill factors from lowest to highest loadings 
are 0.05%, 0.4%, and 4%. Displayed spectra are averaged over roughly 1000 pixels. 
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Figure 7. Hypercube of particulate caffeine on glass. Individual pixels show significant variation. The left plot displays 
individual spectra and the average from the area highlighted on the left. Spectra from 25 pixels are displayed. 
 

Figure 7 displays some of the pixel-to-pixel variation seen in measured hypercubes. We attribute these variations to a 
combination of particle size variation, particle distribution inhomogeneity, and speckle from the rough surface of the 
particulate itself. As shown in Figure 8, the variability seems to be mostly in magnitude and not in spectral similarity. 
The angular spectral variability, cos θ, is calculated as a normalized dot product between the spectrum of each pixel and 
the average of all pixels. This is the basic concept used in the ACE detection algorithm. The magnitude is simply the 
normalized spectral magnitude for each pixel. 
 
 
 
 
 

 
Figure 8. Spectral variability of pixels compared to sample average. There is much larger fluctuation in magnitude than in cos θ. 
Sample is particulate caffeine on glass. 
 
 

 

cos ߠ = ܵ̅ ∙ ⟨ܵ̅⟩|ܵ̅| ∙ |⟨ܵ̅⟩| ; ݁݀ݑݐ݅݊݃ܽܯ = |ܵ̅||⟨ܵ̅⟩|
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5. CONCLUSIONS
We present results from a hyperspectral imaging system that accurately and rapidly captures hypercubes using EC-
QCLs. It can capture hypercubes with 137 illumination frames and 13 dark frames in 95 ms. To the best of our 
knowledge, this is the fastest hypercube capture using wavelength tunable lasers in the MIR. The system was used to 
investigate a range of samples with different morphologies and different mass loadings, including silicone oil on 
Aluminum and HDPE and assorted solids on glass. Solid particles on glass were measured with mass loadings below 1 
μg/cm2. Investigations continue to refine signature models and to understand the effects of signature variability and 
speckle in measured spectra.  
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